172 research outputs found

    Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3

    Get PDF
    Genome wide association studies (GWAS) for Parkinson's disease (PD) have previously revealed a significant association with a locus on chromosome 7p15.3, initially designated as the glycoprotein non-metastatic melanoma protein B (GPNMB) locus. In this study, the functional consequences of this association on expression were explored in depth by integrating different expression quantitative trait locus (eQTL) datasets (Braineac, CAGEseq, GTEx, and Phenotype-Genotype Integrator (PheGenI)). Top risk SNP rs199347 eQTLs demonstrated increased expressions of GPNMB, KLHL7, and NUPL2 with the major allele (AA) in brain, with most significant eQTLs in cortical regions, followed by putamen. In addition, decreased expression of the antisense RNA KLHL7-AS1 was observed in GTEx. Furthermore, rs199347 is an eQTL with long non-coding RNA (AC005082.12) in human tissues other than brain. Interestingly, transcript-specific eQTLs in immune-related tissues (spleen and lymphoblastoid cells) for NUPL2 and KLHL7-AS1 were observed, which suggests a complex functional role of this eQTL in specific tissues, cell types at specific time points. Significantly increased expression of GPNMB linked to rs199347 was consistent across all datasets, and taken in combination with the risk SNP being located within the GPNMB gene, these results suggest that increased expression of GPNMB is the causative link explaining the association of this locus with PD. However, other transcript eQTLs and subsequent functional roles cannot be excluded. This highlights the importance of further investigations to understand the functional interactions between the coding genes, antisense, and non-coding RNA species considering the tissue and cell-type specificity to understand the underlying biological mechanisms in PD

    A population scale analysis of rare SNCA variation in the UK Biobank

    Get PDF
    Parkinson's disease (PD) is a complex neurodegenerative disease with a variety of genetic and environmental factors contributing to disease. The SNCA gene encodes for the alpha-synuclein protein which plays a central role in PD, where aggregates of this protein are one of the pathological hallmarks of disease. Rare point mutations and copy number gains of the SNCA gene have been shown to cause autosomal dominant PD, and common DNA variants identified using Genome-Wide Association Studies (GWAS) are a moderate risk factor for PD. The UK Biobank is a large-scale population prospective study including ~500,000 individuals that has revolutionized human genetics. Here we assessed the frequency of SNCA variation in this cohort and identified 30 subjects carrying variants of interest including duplications (n = 6), deletions (n = 6) and large complex likely mosaic events (n = 18). No known pathogenic missense variants were identified. None of these subjects were reported to be a PD case, although it is possible that these individuals may develop PD at a later age, and whilst three had known prodromal features, these did not meet defined clinical criteria for being considered ‘prodromal’ cases. Seven of the 18 large complex carriers showed a history of blood based cancer. Overall, we identified copy number variants in the SNCA region in a large population based cohort without reported PD phenotype and symptoms. Putative mosaicism of the SNCA gene was identified, however, it is unclear whether it is associated with PD. These individuals are potential candidates for further investigation by performing SNCA RNA and protein expression studies, as well as promising clinical trial candidates to understand how duplication carriers potentially escape PD

    Lower lymphocyte count is associated with increased risk of Parkinson's disease

    Get PDF
    Objectives: Patients with established Parkinson’s disease (PD) display differences in peripheral blood biomarkers of immune function, including leukocyte differential counts, compared to controls. These differences may be useful biomarkers to predict PD and shed light on pathogenesis. We sought to identify whether peripheral immune dysregulation was associated with increased risk of subsequent PD diagnosis. Methods: We examined the relationship between incident PD and baseline differential leukocyte count and other blood markers of acute inflammation in UK Biobank, a longitudinal cohort with >500 000 participants. We used a range of sensitivity analyses and Mendelian randomization (MR) to further explore the nature of associations. Results: After excluding individuals with comorbidities which could influence biomarkers of inflammation, 465 incident PD cases and 312,125 controls remained. Lower lymphocyte count was associated with increased risk of subsequent PD diagnosis (per 1‐SD decrease in lymphocyte count OR 1.18, 95% CI 1.07‐1.32, padjusted=0.01). There was some evidence that reductions in eosinophil and monocyte counts and CRP were associated with increased PD risk, as was higher neutrophil count. Only the association between lower lymphocyte count and increased PD risk remained robust to sensitivity analyses. MR suggested that the effect of lower lymphocyte count on PD risk may be causal (per 1‐SD decrease in lymphocyte count; ORMR 1.09, 95% CI 1.01‐1.18, p=0.02). Interpretation: We provide converging evidence from observational analyses in UKB and MR that lower lymphocyte count is associated with an increased risk of subsequent PD

    The clinical, neuroanatomical, and neuropathologic phenotype of TBK1-associated frontotemporal dementia: A longitudinal case report

    Get PDF
    Introduction: Mutations in the TANK-binding kinase 1 (TBK1) gene have recently been shown to cause frontotemporal dementia (FTD). However, the phenotype of TBK1-associated FTD is currently unclear. / Methods: We performed a single case longitudinal study of a patient who was subsequently found to have a novel A705fs mutation in the TBK1 gene. He was assessed annually for more than a 7-year period with a series of clinical, cognitive, and magnetic resonance imaging assessments. His brain underwent pathological examination at postmortem. / Results: The patient presented at the age of 64 years with an 18-month history of personality change including increased rigidity and obsessiveness, apathy, loss of empathy, and development of a sweet tooth. His mother had developed progressive behavioral and cognitive impairment from the age of 57 years. Neuropsychometry revealed intact cognition at first assessment. Magnetic resonance imaging showed focal right temporal lobe atrophy. Over the next few years his behavioral problems progressed and he developed cognitive impairment, initially with anomia and prosopagnosia. Neurological examination remained normal throughout without any features of motor neurone disease. He died at the age of 72 years and postmortem showed TDP-43 type A pathology but with an unusual novel feature of numerous TDP-43–positive neuritic structures at the cerebral cortex/subcortical white matter junction. There was also associated argyrophilic grain disease not previously reported in other TBK1 mutation cases. / Discussion: TBK1-associated FTD can be associated with right temporal variant FTD with progressive behavioral change and relatively intact cognition initially. The case further highlights the benefits of next-generation sequencing technologies in the diagnosis of neurodegenerative disorders and the importance of detailed neuropathologic analysis

    Mitochondria function associated genes contribute to Parkinson’s Disease risk and later age at onset

    Get PDF
    Mitochondrial dysfunction has been implicated in the etiology of monogenic Parkinson’s disease (PD). Yet the role that mitochondrial processes play in the most common form of the disease; sporadic PD, is yet to be fully established. Here, we comprehensively assessed the role of mitochondrial function-associated genes in sporadic PD by leveraging improvements in the scale and analysis of PD GWAS data with recent advances in our understanding of the genetics of mitochondrial disease. We calculated a mitochondrial-specific polygenic risk score (PRS) and showed that cumulative small effect variants within both our primary and secondary gene lists are significantly associated with increased PD risk. We further reported that the PRS of the secondary mitochondrial gene list was significantly associated with later age at onset. Finally, to identify possible functional genomic associations we implemented Mendelian randomization, which showed that 14 of these mitochondrial function-associated genes showed functional consequence associated with PD risk. Further analysis suggested that the 14 identified genes are not only involved in mitophagy, but implicate new mitochondrial processes. Our data suggests that therapeutics targeting mitochondrial bioenergetics and proteostasis pathways distinct from mitophagy could be beneficial to treating the early stage of P

    Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts.

    Get PDF
    The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care

    Genome-Wide Association Study Meta-Analysis for Parkinson Disease Motor Subtypes

    Get PDF
    Objective: To discover genetic determinants of Parkinson disease (PD) motor subtypes, including tremor dominant (TD) and postural instability/gait difficulty (PIGD) forms. Methods: In 3,212 PD cases of European ancestry, we performed a genome-wide association study (GWAS) examining 2 complementary outcome traits derived from the Unified Parkinson's Disease Rating Scale, including dichotomous motor subtype (TD vs PIGD) or a continuous tremor/PIGD score ratio. Logistic or linear regression models were adjusted for sex, age at onset, disease duration, and 5 ancestry principal components, followed by meta-analysis. Results: Among 71 established PD risk variants, we detected multiple suggestive associations with PD motor subtype, including GPNMB (rs199351, psubtype = 0.01, pratio = 0.03), SH3GL2 (rs10756907, psubtype = 0.02, pratio = 0.01), HIP1R (rs10847864, psubtype = 0.02), RIT2 (rs12456492, psubtype = 0.02), and FBRSL1 (rs11610045, psubtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants was also associated with subtype ratio (p = 0.026, ß = -0.04, 95% confidence interval = -0.07-0). Based on top results of our GWAS, we identify a novel suggestive association at the STK32B locus (rs2301857, pratio = 6.6 × 10-7), which harbors an independent risk allele for essential tremor. Conclusions: Multiple PD risk alleles may also modify clinical manifestations to influence PD motor subtype. The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for essential tremor and tremor-dominant PD

    Multi-ancestry genome-wide association meta-analysis of Parkinson's disease.

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson's disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson's disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Genome-Wide Association Studies of Cognitive and Motor Progression in Parkinson's Disease

    Get PDF
    BACKGROUND: There are currently no treatments that stop or slow the progression of Parkinson's disease (PD). Case-control genome-wide association studies have identified variants associated with disease risk, but not progression. The objective of the current study was to identify genetic variants associated with PD progression. METHODS: We analyzed 3 large longitudinal cohorts: Tracking Parkinson's, Oxford Discovery, and the Parkinson's Progression Markers Initiative. We included clinical data for 3364 patients with 12,144 observations (mean follow-up 4.2 years). We used a new method in PD, following a similar approach in Huntington's disease, in which we combined multiple assessments using a principal components analysis to derive scores for composite, motor, and cognitive progression. These scores were analyzed in linear regression in genome-wide association studies. We also performed a targeted analysis of the 90 PD risk loci from the latest case-control meta-analysis. RESULTS: There was no overlap between variants associated with PD risk, from case-control studies, and PD age at onset versus PD progression. The APOE ε4 tagging variant, rs429358, was significantly associated with composite and cognitive progression in PD. Conditional analysis revealed several independent signals in the APOE locus for cognitive progression. No single variants were associated with motor progression. However, in gene-based analysis, ATP8B2, a phospholipid transporter related to vesicle formation, was nominally associated with motor progression (P = 5.3 × 10-6 ). CONCLUSIONS: We provide early evidence that this new method in PD improves measurement of symptom progression. We show that the APOE ε4 allele drives progressive cognitive impairment in PD. Replication of this method and results in independent cohorts are needed. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society

    Community-based genetic study of Parkinson´s disease in Estonia.

    Get PDF
    OBJECTIVE: To examine the genetic variability of Estonian Parkinson´s disease (PD) patients using an ongoing epidemiological study in combination with a genetic analysis. METHODS: This study was a community-based genetic screening study of 189 PD patients and 158 age and sex matched controls screened for potential mutations in 9 PD genes using next-generation sequencing and multiplex ligation-dependent probe amplification method. Different clinimetric scales and questionnaires were used to examine PD patients and assess clinical characteristics and severity of the disease. RESULTS: The overall frequency of pathogenic PD-causing variants was 1.1% (2/189), any rare genetic variant was present in 21.2% (40/189) of the patients and in 8.2% (13/158) of the controls (p<0.05). Variants of unknown significance accounted for 10.6% (20/189). Frequency of any GBA variant among PD patients was 10.1% (19/189) and in controls 3.8% (6/158). The frequency of any GBA variant in PD compared to controls was significantly higher (p = 0.035; OR 2.82; CI 95% 1.05-8.87). Burden of rare variants was not different between patients and controls. Also, a novel GBA pathogenic variant p.E10X was detected. CONCLUSION: Among different genetic variants identified in Estonian PD patients, GBA variants are the most common while an overall pathogenic variant frequency was 1.1%
    corecore